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SUMMARY

Large eddy simulation (LES) with additional filtering of the non-linear term, also coined LES with
double decomposition of the subgrid-scale stress, is considered. In the literature, this approach is mainly
encountered in combination with pseudo-spectral discretization methods. In this case, the additional filter
is a sharp cut-off filter, which appears in the eventual computational algorithm as the 2/3-dealiasing
procedure. In the present paper, the LES approach with additional filtering of the non-linear term is
evaluated in a spatial, finite-difference discretization approach. The sharp cut-off filter used in pseudo-
spectral methods is then replaced by a ‘spectral-like’ filter, which is formulated and discretized in physical
space. As suggested in the literature, the filter width � of this spectral-like filter corresponds at least to
3/2 times the grid spacing h to avoid aliasing. Furthermore, spectral-like discretization of the derivatives
are constructed such that derivative-discretization errors are low in the wavenumber range resolved by
the filter, i.e. 0�kh�2�/3. The resulting method in combination with a Smagorinsky model is tested for
decaying homogeneous isotropic turbulence and compared to standard lower-order discretization methods.
Further, an analysis is elaborated of the Galilean-invariance problem, which arises when LES in double
decomposition approach is combined with filters, which do not correspond to an orthogonal projection.
The effects of a Galilean coordinate transformation on LES results, are identified in simulations, and we
demonstrate that a Galilean transformation leads to wavenumber-dependent shifts of the energy spectra.
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1. INTRODUCTION

Large eddy simulation (LES) is evolving as an important simulation technique for the calculation of
turbulent flows. The advantage of this technique is its relative low computational cost, compared to
the direct simulation of the Navier–Stokes equations, while accurate results may still be obtained.
In LES, this is achieved by filtering the original Navier–Stokes equations with a low-pass filter.
The aim of this operation is to reduce the number of modes or length scales in the solution of the
filtered Navier–Stokes equations, such that they can be solved on a much coarser grid, and hence,
with a much lower cost, than direct numerical simulation would require.

The formal filtering of the Navier–Stokes equations is well established and described in several
books and review articles, e.g. [1–5]. The crux of the matter, when filtering the Navier–Stokes
equations, is the filtering of the non-linear term uiu j (where ui represents the i th component of
the velocity field u). In contrast to all other terms in the equations, the filtered non-linear term
cannot be expressed directly in terms of filtered variables. To solve this, the non-linear term is
typically split into a part which can be expressed as a function of filtered quantities and into a
part which has to be closed with a model. Two main methodologies exist for this splitting [1, 6]
i.e. following Leonard [7], and by introducing ui = ui + u′

i , one obtains

uiu j = uiu j + uiu′
j + u′

i u j︸ ︷︷ ︸
Ci j

+ u′
i u

′
j︸︷︷︸

Ri j

(1)

The part which has to be closed, coined the subgrid-scale stresses, consists of two terms, i.e. the
cross-stresses Ci j and the Reynolds stresses Ri j . Hence, the subgrid stresses �i j are

�i j = uiu j − uiu j = − Ci j − Ri j (2)

The corresponding filtered Navier–Stokes equation is

�ui
�t

+ �uiu j

�x j
+ �p

�xi
− ��i j

�x j
= ��i j

�x j
(3)

where �i j is the viscous stress term.
A second methodology for splitting the non-linear term corresponds to

uiu j = uiu j + uiu j − uiu j︸ ︷︷ ︸
Li j

+ uiu′
j + u′

i u j︸ ︷︷ ︸
Ci j

+ u′
i u

′
j︸︷︷︸

Ri j

(4)

with Li j the Leonard stresses. The corresponding subgrid-stress tensor �∗
i j is

�∗
i j = uiu j − uiu j = − Li j − Ci j − Ri j (5)

These two approaches are labelled LES with double decomposition and LES with triple (or
Leonard) decomposition, respectively, in Reference [1].

From a conceptual point of view, one might prefer the fact that LES with double decomposition
retains only those terms in the subgrid-scale stresses, which cannot be expressed explicitly as a
function of filtered quantities. This is in contrast to LES with triple decomposition, where Li j
can be expressed as a function of filtered quantities. However, the double decomposition approach
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also has conceptual disadvantages. In principle, Navier–Stokes equations are Galilean invariant.
However, the non-linear term uiu j , and therefore the subgrid-scale stresses �i j are not necessarily
Galilean invariant [8], although their sum is. Both terms are Galilean invariant only, when u=u.
This occurs when the LES filter is an orthogonal projection filter such as, e.g. a spectral cut-off
filter. As most subgrid-scale models are Galilean invariant, this introduces an extra difficulty. For
non-orthogonal filters, the sum of a Galilean invariant subgrid-scale models and the non-linear
term uiu j is not invariant under Galilean transformations. Consequently, for non-orthogonal filters,
LES with double decomposition is not Galilean invariant.

On average, when LES filters are considered which do not correspond to an orthogonal projection
filter, the triple decomposition approach is most often used. Without being complete, examples
can be found in References [4, 9–14]. On the other hand, when orthogonal projection filters are
available, i.e. most notoriously in pseudo-spectral methods, the double decomposition approach is
common standard. In this case, the outer filter operation on the non-linear term uiu j corresponds
often to the 2/3-dealiasing rule, e.g. References [15–21].

The aim of the present paper is to assess the implementation of LES with the double-
decomposition approach in a finite-difference discretization context and to reduce corresponding
discretization errors as much as possible. The advantage of finite-difference-discretization meth-
ods, or other discretization methods in physical space, such as finite volumes, is their flexibility in
implementation and use, when complex geometries or additional complex physics such as combus-
tion, multi-phase flow, etc. are involved. The advantage of the double-decomposition approach to
LES is the unequivocal way in which errors can be identified into discretization errors on the one
hand, including differencing and aliasing errors; and modelling errors on the other hand, e.g. [22].
Furthermore, discretization errors and modelling errors can be reduced independently from each
other. In contrast, while using the triple-decomposition approach, errors are not as easily identi-
fied, and possible discretization and modelling errors can depend on each other in a complex way
[10, 14].

In this paper, all presented LES results will refer to simulations with an additional filter on
the non-linear term and two main challenges will be addressed with respect to the use of finite-
difference discretization for LES in a double-decomposition approach, i.e.

1. The implementation of a spectral-like filter in physical space, using filter schemes first
introduced in [23]. As proposed by Ghosal [22], the width � of the filter will be selected
such that ��3h/2, with h the grid spacing of the discretization. This corresponds to the
2/3-dealiasing procedure [24] used in pseudo-spectral methods. Ghosal’s proposal was tested
before in Reference [25], where promising results were obtained with this methodology. The
present paper provides supplementary results and in addition elaborates a careful evaluation
of the Galilean-invariance issue, which appears when the outer filter on the non-linear term
uiu j deviates from a sharp cut-off filter.

2. The formulation of differentiation schemes, which are spectral-like over a wide wavenumber
range. Here compact schemes are used [23], which are tuned such that they provide
an excellent accuracy in the wavenumber band [0, 2

3�/h]. As such, they allow a minimal
filter-width-to-grid-size ratio �/h, i.e. 3/2, when accounting for dealiasing.

The paper is further organized as follows. First, in Section 2, the filter and differentiation schemes
in use are briefly discussed. Next, in Section 3, LES results are presented. Results obtained with
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standard discretization schemes of second and fourth order are compared to results of spectral-like
discretization. Further, a comparison is presented between spectral-like and sharp cut-off filtering.
Subsequently, the Galilean-invariance issue is elaborated in more detail in Section 4. Finally,
conclusions are presented in Section 5.

2. DIFFERENTIATION AND FILTER SCHEMES

In the present section, a brief overview is presented of the schemes which are used to discretize
the filter and differentiation operators. The specific schemes which are used, correspond with the
general class of the compact schemes, on which a comprehensive discussion is presented in [23].
Throughout the discussion, the two main objectives presented at the end of Section 1, will be
addressed.

First of all, for filtering, a class of central filters was proposed by Lele [23]:

��i+2 + ��i+1 + �i + ��i−1 + ��i−2

=a�i + b
�i+1 + �i−1

2
+ c

�i+2 + �i−2

2
+ d

�i+3 + �i−3

2
(6)

This scheme corresponds to a one-dimensional filter, which is successively applied in the three
co-ordinate directions on the non-linear term. The filter kernel in Fourier space for this class of
filters is given by

G(kh) = a + b cos(kh) + c cos(2kh) + d cos(3kh)

1 + 2� cos(kh) + 2� cos(2kh)
(7)

G(kh) is also coined the filter transfer function, where k is the wavenumber in Fourier space.
For sake of non-dimensionalization, k is further multiplied in the argument of G with the grid
spacing h.

In order to obtain values for the parameters �, �, a, etc. different constraints on G(kh) can be set
[23]. First of all, as a trivial requirement for a filter, G(0)= 1 and G(�) = 0 is required. Moreover,
since G(kh) is based on functions which are even at kh = 0 and kh = �, all odd derivatives of
G(kh) evaluated at kh = 0 or kh = � are zero. Hence, extra possible constraints are

�2G
�k2

∣∣∣∣∣
kh=0

= 0,
�4G
�k4

∣∣∣∣∣
kh=0

= 0, · · ·

�2G
�k2

∣∣∣∣∣
kh=�

= 0,
�4G
�k4

∣∣∣∣∣
kh=�

= 0, · · ·
(8)

and further at certain values for kh, the value of G can be specified, e.g. G(2�/3) = 0.4.
The sharpness which can be attained for a filter according to Equation (6) corresponds to the

number of parameters selected different from zero. We take all parameters to be different from
zero. Hence, apart from the two trivial constraints G(0)= 1 and G(�) = 0, four extra constraints
are used. Monotonicity of the function G(kh) in the interval 0�kh�� is achieved by selecting
three constraints from Equation (8), and only one constraint remains which can be used to shift
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Figure 1. Transfer functions of different filters (cf. Table I). (�): top-hat filter (� = 2h) approximated
with trapezoid integration rule; (—): Filter A; (−−): Filter B; and (−·): Filter C.

the flank of G(kh) to lower or higher values of k. This is illustrated in Figure 1, where three
such monotonous filters are presented. The corresponding constraints and coefficients are listed in
Table I. In addition, a top-hat filter (with trapezoid integration) is also displayed in Figure 1 and
listed in Table I. The latter provides an impression of the relative ‘sharpness’ of the pentadiagonal
filters compared to, e.g. top-hat or Gauss filters.

In the present paper, Filter A is used for the LES computations (cf. Section 3). As is observed
in Figure 1, the point G(kh) = 0.5 is situated slightly to the left of kh = 2�/3, i.e. G(2�/3)= 0.4.
We select this as an approximation of a sharp cut-off filter with width �= 3h/2, i.e. corresponding
to the minimum allowable filter width if aliasing is to be avoided (cf. Section 1). From Figure 1,
it is obvious that a trade-off has to be made between an as-late-as-possible drop-off of G(kh) in
the region kh<2�/3 on the one hand, and an as-fast-as-possible drop-off to zero in the region
kh>2�/3 on the other hand. In order to ensure better dealiasing behaviour, we slightly favour the
latter desire by taking a pentadiagonal filter which is shifted a little to the left, i.e. G(2�/3) = 0.4
instead of 0.5. Naturally, other choices can be made. However, it is not in the scope of the present
paper to present a full sensitivity analysis, but merely to show to potential of the methodology,
and, as will be discussed in Section 3, the selected filter provides excellent results.

Next to filtering, the discretization of the differentiation operator is also performed with compact
schemes [23], i.e.

��′
i+2+��′

i+1+�′
i+��′

i−1+��′
i−2 = a

�i+1 − �i−1

2h
+b

�i+2 − �i−2

4h
+c

�i+3 − �i−3

6h
(9)

The transfer function of Equation (9) is

G(kh)= a sin(kh) + (b/2) sin(2kh) + (c/3) sin(3kh)

kh(1 + 2� cos(kh) + 2� cos(kh))
(10)
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Table I. Constraints and filter coefficients for various pentadiagonal filters.

Constraints �,�, a, b, c, d Filter description

G(2)(0)= 0,

G(4)(0)= 0,

G(2)(�) = 0,

G(2�/3) = 0.4

� = 0.479664

�= 0.204067

a = 0.859748

b = 1.16971

c = 0.323983

d = 0.0140252

Filter A

G(2)(0) = 0,

G(4)(0) = 0,

G(2)(�) = 0,

G(0.55�) = 0.5

� = 0.190112

�= 0.261978

a = 0.642584

b = 0.916348

c = 0.309506

d = 0.0357416

Filter B

G(2)(0)= 0,

G(2)(�) = 0,

G(4)(�) = 0,

G(�/3) = 0.4

� = −0.57086

�= 0.185828

a = 0.0718553

b = 0.107783

c = 0.0431132

d = 0.00718553

Filter C

�,�= 0

a, b = 1
2

c, d = 0

Top-hat filter (�= 2h)

with trapezoid integration

Here G is defined using

G(kh) = F

{
D�

Dx

}/
F

{
��

�x

}
(11)

whereF{·} is a Fourier transform. Further, D/Dx is a symbolic notation referring to the discretized
derivative, while �/�x refers to the exact derivation.

The different coefficients �, �, a, b and c can be selected based on several constraints. Lele [23]
proposed to make a mix between high formal accuracy (i.e. order of the Taylor series truncation)
on the one hand, and a good spectral behaviour of the transfer function over a wide wavenumber
range on the other hand. The former is related to the behaviour of G(kh) at kh = 0; the latter can

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:383–400
DOI: 10.1002/fld



LES: HIGH-ORDER FINITE-DIFFERENCE DISCRETIZATION 389

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

kh/π

G
(k

h)

Figure 2. Derivative transfer functions versus wavenumber for various high-order and spectral-like central
differencing schemes. (· · ·): standard second-order scheme; (– –): standard fourth-order scheme; (–·):

compact eighth-order scheme; and (—): spectral-like scheme. See also Table II.

Table II. Coefficients for various derivative-discretization schemes.

� � a b c

Standard second order 0 0 1 0 0
Standard fourth order 0 0 4/3 −1/3 0
Compact eighth-order 0 3/8 25/16 1/5 −1/80
Spectral-like 0 0.421145 1.55849 0.317165 −0.0333647

be obtained by replacing formal accuracy constraints by constraints of the form G(p) = 1, where
p is a carefully selected value for kh.
In Figure 2, several discretization schemes for the first derivative are compared. For refer-

ence, the coefficients of these schemes are listed in Table II. Next to standard second-order and
fourth-order schemes, a compact eighth-order scheme is also presented. Further a four-parameter
(�, a, b and c) spectral-like scheme is constructed of the same complexity as the eighth-order
scheme, by requiring fourth-order formal accuracy and further G(2�/3) = 1 and G(0.55�). This
scheme is constructed to obtain good accuracy (G ≈ 1) in the range kh = 0 to 2�/3, which
corresponds to the range of resolved scales associated with the minimum filter width �= 3h/2
allowed for proper dealiasing. The specific choices G(2�/3)= 1 and G(0.55�) are easily obtained
from trial-and-error optimization, and various other combinations exist, which result in the same
quality.

The combination of a sharp cut-off filter or spectral-like cut-off filter, with cut-off kch = 2�/3,
and a spectral-like discretization scheme which is accurate over the wavenumber range 0�kh�2�/3,
is optimal with respect to the computational resources which are needed to resolve LES with
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Table III. Total number of floating point operations used for different discretization
schemes which are, using appropriate grid refinement, roughly at the same accuracy

(assignments are not counted).

�/�x1 Filtering (1D)

Second order 512(L/�)4 5888(L/�)4 − 1088(L/�)3

Fourth order 80(L/�)4 368(L/�)4 − 272(L/�)3

Spectral-like 513
8 (L/�)4 − 9

4 (L/�)3 1863
16 (L/�)4 − 459

8 (L/�)3

Table IV. Number of floating point operations (assignments are not counted) for matrix
inversion of compact schemes (cf. Reference [26] for a detailed overview).

Non-periodic boundary conditions Periodic boundary conditions

� �= 0,� �= 0 9n − 12 13n − 17
� �= 0, �= 0 5n − 4 7n − 2
�= 0, � �= 0 5n − 4 7n − 2 (n even)

9n − 12 (n odd)

a filter width �. Indeed, consider LES with double decomposition using a sharp cut-off filter
with filter width � and corresponding cut-off wavenumber kc = �/�. To accurately discretize the
corresponding filtered Navier–Stokes equations (Equation (3)), a grid of spacing h is used. To
avoid dealiasing, the ratio �/h should be at least 3/2. However, depending on the choice of
discretization scheme, this required ratio can be much higher for accuracy reasons. For standard
second-order central schemes, a rather optimal estimation might be �/h = 4, while for standard
fourth-order schemes, at least a ratio �/h = 2 might be in order. Hence for the same choice
of �, a second-order scheme requires the finest grid. The corresponding differences in com-
putational time can be large. For instance, for a standard second-order scheme, the number of
cells n in one direction corresponds to n = 4L/� (assuming �/h = 4 is required, and taking
L the size of the computational domain). The number of time steps needed to integrate the
equations over a period T , is—by means of a CFL-criterion—proportional to n. Hence, the to-
tal number of operations (ignoring assignments, counting only +, −, × and /) to spend on the
calculations of, e.g. �/�x1 is easily estimated as being proportional to 2(4L/�)4 = 512(L/�)4.
Similarly, for a standard fourth-order scheme (n = 2L/�) and for the spectral-like scheme pre-
sented in Table II (n = 3

2 L/�), an operation count can be performed. An overview is presented in
Table III. The operation count for the spectral-like scheme is partially supported by the detailed
operation count of the matrix-inversion algorithms, which are briefly summarized in Table IV. An
extensive overview of the matrix-inversion algorithms and their operation count can be found in
Reference [26].

Comparison of the three schemes in Table III shows that the discretization of �/�x1 using a
fourth-order scheme is up to six times faster than the second-order scheme, while the use of a
spectral-like scheme is up to eight times faster than the use of a second-order scheme. When
comparing the number of operations spent on a one-dimensional spectral-like filter operation (with
a pentadiagonal filter and all coefficients �= 0), the difference is even more pronounced. In this
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case, the fourth-order discretization is 16 times faster than the second-order discretization, while
the spectral-like discretization is up to 50 times faster. This analysis clearly illustrates the advantage
of discretization schemes which allow, with respect to accuracy, for a filter-to-grid ratio �/h close
to 3/2.

The discretization of second derivatives can be based on the same principles as that of the first
derivative. The discretization of cross-derivatives �/�xi�x j , i �= j is a straightforward combination

of two first-derivative schemes in different spatial directions. For the discretization of �2/�x2i two
approaches are compared. First of all a tridiagonal spectral-like scheme for the discretization of the
second derivative is constructed [23] and used. Secondly, the second derivative is constructed by a
subsequent operation of two first derivatives in the same direction. The latter is in general considered
bad practice, since it typically causes decoupling of the equations and results in instabilities.
However, for the spectral-like compact scheme used here, both approaches give identical results.
When, e.g. standard fourth-order schemes are used, this is not anymore the case, and instabilities are
observed indeed for the second approach. Actual LES results will be presented in the next section,
with main emphasis on the first-derivative discretization, while the second-derivative discretization
is always implemented conform to the scheme used for the first derivative.

We discussed the construction of compact spectral-like schemes in finite-difference discretiza-
tion. The implementation of compact schemes can be extended to finite-volume methods on
arbitrary meshes, such that the presented methodology is also applicable for finite-volume codes
and more complex applications. More details on the implementation of compact schemes in a
finite-volume context can, e.g. be found in [27, 28].

3. APPLICATION OF SPECTRAL-LIKE DISCRETIZATION IN LES

We apply the techniques introduced in the previous section on decaying homogeneous isotropic
turbulence. This allows for the methodical evaluation of two different effects. First of all, the
effectiveness of the pentadiagonal filtering of the non-linear term is evaluated and compared with
sharp cut-off dealiasing. Secondly, the quality of simulations using spectral-like discretization and
filtering is compared to the results which are obtained with standard second- and fourth-order
approaches to LES discretization. All results are further compared to DNS reference data.

Before turning to the evaluation of these two effects, we first briefly introduce some further
details on the test case, and the numerical set-up of the simulations. The reference DNS is performed
on a 2563 box with size L= 2�, which was run using a dealiased pseudo-spectral code [29]. The
LES is started by truncating the DNS solution at tDNS ≈ 4.17 (for the LES run, t = 0 at this point)
and using this field as an initial condition. The initial Taylor Reynolds number Re� ≈ 90. Further,
the Kolmogorov scale approximately corresponds to L/400.

LESs are performed on a 363 grid. To generate the initial condition, the DNS is truncated in
spectral space to 24 modes, and padded with zeros up to 36 modes, hence allowing a 2

3 -dealiasing
procedure in physical space as described in the previous section. The LES is performed with
the EURANUS solver,‡ which is a compressible Navier–Stokes solver. The different compact

‡The EURANUS solver was originally developed at VUB (Brussels, Belgium) and FFA (Sweden) in the framework
of the ESA/ESTEC contract 8356/98/NL/FG. At present, this solver is part of the FINE/TURBO package, which
is developed and distributed by Numeca International. This company originated as a spin-off of the Department of
Fluid Mechanics, Vrije Universiteit Brussel.
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Figure 3. DNS reference [29] and LES spectra at three time instances. (o): DNS; (—): case 1, LES with
sharp cut-off dealiasing; (−−): case 2, LES with compact pentadiagonal dealiasing; (· · ·): case 3, LES
without dealiasing (only in (a)); (–·): case 1 at point of divergence (occurs at t ≈ 0.73, therefore presented

in (a)); (a) t ≈ 0.33. (b) t ≈ 3.33. (c) t ≈ 4.83.

formulations are implemented in this solver. For the time integration, a second-order five-stage
low-storage Runge–Kutta scheme is used. The time stepping is limited with a CFL number of
2. The computations are run at a Mach number M = 0.2, such that compressibility effects are
negligible.

The effectiveness of pentadiagonal filtering of the non-linear term is now elaborated. To this
end, three different cases are compared, all of them using a spectral-like compact scheme for
the discretization (cf. Figure 2, spectral-like A). First (case 1), as a reference case, dealiasing is
performed using a cubical sharp cut-off filter which is implemented using forward and backward
Fourier transforms. In a second case (2), the filtering of the non-linear term is performed based on
a pentadiagonal filter in physical space. This filter corresponds to Filter A in Table I. Finally, a case
is run (case 3) without the use of dealiasing or filtering of the non-linear term. For all three cases,
we use a constant-coefficient Smagorinksy model with Cs = 0.16, which is a common accepted
value for homogeneous turbulence. We do not use a dynamic procedure, since we want to avoid
that differences between the cases are concealed by a different dynamic selection of Smagorinsky
constants.

In Figure 3, three-dimensional energy spectra are presented for these three cases and compared
to DNS data at three different time instances in the simulation, i.e. t = 0.33, t = 3.33 and t = 4.83.
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In all plots, the filter cut-off wavenumber (at k = 2
3�/h) is also displayed. Beyond this wavenumber,

energy spectra still show a small amount of energy. For these wavenumbers k> 2
3�/h, wavenumber

spheres in three-dimensional Fourier space only partially intersect with the cubical computational
box. Hence, integration over wavenumber spheres to obtain the energy spectrum is not complete
for these values of k. We elected to display these ‘partial’ modes since they more clearly highlight
possible high-wavenumber energy pile up and divergence. Evidently, in this range, the comparison
between LES and DNS is irrelevant.

First of all, case 3 (Figure 3) is not stable and diverges shortly after t ≈ 0.8. The divergence
of case 3 is clearly induced by an increase of the energy in the smallest scales. This event does
not result from any physical turbulence phenomenon, but is solely related to the dealiasing error.
Both cases 1 and 2, where some form of dealiasing is used, provide reasonable results as can be
seen in Figure 3(a)–(c). Further, the use of pentadiagonal filters provides a slightly higher energy
during the calculation than seen in the sharp-cut-off-dealiasing case. However, these differences
are minimal.

We now turn to the comparison of spectral-like discretization of the derivatives to a fourth-order
discretization method, both using sharp-cut off dealiasing. Next to this, results from a standard
second-order method without dealiasing are also included. The last case can be considered as
a ‘low-quality’ reference. In contrast to the simulations discussed in Figure 3, we now use a
dynamic Smagorinsky model [30]. In this way, every method is allowed to obtain its optimal
model coefficient [31, 32] without partiality in the selection of Cs .

In Figure 4 results are presented. We emphasize that the spectral-like and fourth-order cases
use only 24 of the possible 36 modes available on a 363 grid, since the last third of the modes is
removed with a sharp cut-off filter to avoid aliasing. The second-order case does not use dealiasing
and utilizes the full 36 modes. However, as can be appreciated in Figure 4(b) and (c), the second-
order results are clearly inferior to both higher-order methods in spite of their decrease in effective
resolution. In fact, the standard second-order LES implementation induces too much dissipation
of energy in the large turbulent scales, while at the same time, too much energy is found at
the tail of the spectrum (note that this simulation does not diverge). This type of pile up may
in part result from too low values for the Smagorinsky coefficient [33]. Further, the absence of
dealiasing typically leads to a spurious injection of extra energy in the high-wavenumber range of
the spectrum (see e.g. [24]). An overestimation of the smallest-scale kinetic energy then results
in a too high kinetic-energy transfer rate from large to small scales due to triadic interactions, i.e.
an accelerated forward energy cascade process, leading to an underestimation of the large-scale
energy.

When both high-order methods are compared in Figure 4, the spectral-like scheme clearly pre-
vails compared to the fourth-order method. The fourth-order method displays too much dissipation
at low wavenumbers (4�k�7) and a slight energy pile-up at large wavenumbers. The effects are
however relatively small compared to the deficiencies in the second-order LES.

The results in the present section allow us to draw three main conclusions. First of all, spectral-
like discretization schemes can only be used in combination with dealiasing. In case the dealiasing
is omitted, the simulations diverge at coarse resolution. Second, the replacement of a sharp cut-off
filter with a pentadiagonal filter does not significantly influence the results, indicating that the latter
is a good approximation to a sharp cut-off filter for dealiasing purposes. Third, a comparison of
spectral-like schemes with dealiasing, with a standard second-order finite-volume method, clearly
indicates superior results for the spectral-like schemes, even though the effective resolution for
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Figure 4. DNS reference [29] and LES spectra for different discretization methods. (©): DNS;
(—): LES with sharp cut-off dealiasing and spectral-like discretization; (−−): LES with sharp
cut-off dealiasing and fourth-order discretization; (–·): standard second-order LES without

dealiasing; (a) t ≈ 0.33. (b) t ≈ 3.33. (c) t ≈ 4.83.

these schemes corresponds only to 2/3 of the resolution available to the standard second-order
method.

A further elaboration on the approximation of a sharp cut-off filter with a pentadiagonal filter
is presented in the next section, addressing the Galilean-invariance issue.

4. GALILEAN INVARIANCE

The problem of Galilean invariance and LES with double decomposition has already been intro-
duced (cf. Section 1). Here, this issue, introduced by [8], is briefly reviewed and further elaborated.
The lack of Galilean invariance of the filtered Navier–Stokes equations in the double-decomposition
formulation, when pentadiagonal sharp cut-off like filters are used, is evaluated theoretically as
well as numerically.

Consider the coordinate frame xbi , which is a Galilean transformation of reference coordinate
frame xai :

xbi = xai + Ui t (12)
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with Ui the relative velocity between both coordinate frames. Hence,

ubi = uai + Ui (13)

and further

〈ubi 〉 = 〈uai 〉 + Ui (14)

ubi = uai + Ui (15)

u′b
i = u′a

i (16)

With the use of Equation (15), it is possible to express a relation between �bi j and �ai j . In fact,

�bi j = ubi u
b
j − ubi u

b
j

= (uai + Ui )(uaj + U j ) − (uai + Ui )(uaj + U j ) (17)

and hence, it follows straightforwardly that

�bi j = �ai j + Ui (u
a
j − uaj ) + (u

a
i − uai )U j (18)

similarly, for the cross and Reynolds stresses (cf. Equation (2)), one obtains

Cb
i j =Ca

i j + Ui (u
a
j − uaj ) + (u

a
i − uai )U j (19)

and

Rb
i j = Ra

i j (20)

Equation (18) clearly illustrates that �i j is not Galilean invariant, but depends on the reference
frame it is expressed in. This can be totally attributed to the fact that the cross-terms Ci j are not
Galilean invariant, as demonstrated in Equation (19), while the Reynolds stresses are Galilean
invariant.

From Equation (18), it is straightforward to define the difference between the subgrid terms cast
in different reference frames:

�absgs,i j = �ai j − �bi j =Ui (u
a
j − u

a
j ) + (uai − u

a
i )U j (21)

Following the same procedure, one can readily derive that the difference between non-linear terms,
cast in different reference frames, results into the same relation, i.e.

�abnl,i j = �absgs,i j (22)

Since both differences occur at the left-hand side and right-hand side of the filtered Navier–Stokes
equations, respectively, it is evident that the full equations remain Galilean invariant. However,
when the subgrid-scale stress is replaced with a Galilean invariant model, �abnl,i j in the left-hand
side of the closed-LES equations will not be balanced by a term on the right-hand side. Hence, in
this case, the closed-LES equations are not Galilean invariant.
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Figure 5. G(kh) and G(kh) − (G(kh))2 for the top-hat filter approximated with a trapezoidal integration
rule and for pentadiagonal Filter A (cf. Table I). (—): pentadiagonal Filter A; (�): G(kh) − (G(kh))2

corresponding to pentadiagonal Filter A; (– –): top-hat filter approximation; (�): G(kh) − (G(kh))2

corresponding to top-hat filter approximation.

The effective difference in the subgrid force between coordinate frame xa and xb corresponds
to ��absgs,i j/�x j (summation over repeated j index). Its Fourier transform yields

F

{
��absgs,i j

�x j

}
=[G(k) − (G(k))2](Ui I k j u j (k) + I k j ui (k)U j ) (23)

with I the imaginary unit. By using k ju j = 0, i.e. expressing continuity in Fourier space for
incompressible flows this further reduces to

F

{
��absgs,i j

�x j

}
= [G(k) − (G(k))2]I k j ui (k)U j (24)

Clearly, when G(k) corresponds to a sharp cut-off filter, �absgs,i j = 0, since G(k) − (G(k))2 = 0
in this case. However, when G(k) deviates from a sharp cut-off filter, as is the case with the
pentadiagonal filters in Section 2, a difference is present. The effective difference in subgrid force
then depends on the scales present in u(k). When the subgrid-scale model is Galilean invariant, it
is exactly this frame-of-reference-dependent force, which will distort the solution.

In Figure 5, G(kh) − (G(kh))2 is presented for two different filters: on the one hand, the
trapezoidal approximation of the top-hat filter, and, on the other hand, the pentadiagonal Filter A
(cf. Table I). From this, it follows that ��absgs,i j/�x j has an influence on a broad range of scales.
This is distinctly the case for the top-hat approximation, where all wavenumbers are influenced. In
contrast, for the pentadiagonal filter, the influence is mainly concentrated around the filter cut-off,
i.e. for 0.5<kh<0.8.
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Figure 6. Influence of a Galilean shift of reference frame on LES with a constant Smagorinsky model.
(©): DNS reference [29] (—): LES with sharp cut-off dealiasing; (– –): LES with pentadiagonal dealiasing;
(–·): LES with pentadiagonal dealiasing and Galilean shift of reference frame with Ui = 1; (· · ·): LES
with pentadiagonal dealiasing and Galilean shift of reference frame with Ui = 6; (a) Decay of kinetic
energy. (b) Energy spectrum at t ≈ 0.33. (c) Energy spectrum at t ≈ 3.33. (d) Energy spectrum at t ≈ 4.83.

In order to check the relevance of Galilean invariance in actual simulations, LES with a Smagorin-
sky model, with and without a Galilean shift of reference frame is performed. Reference is an
LES, where the dealiasing is performed using a sharp cut-off filter. Further, three different LES
with pentadiagonal dealiasing are performed, corresponding to a stationary coordinate frame, a
coordinate frame with velocity shift Ui = 1 and one with Ui = 6, respectively. In addition, to
exclude time integration effects (due to the velocity shift, the magnitude of the maximum absolute
velocity and hence the time step differs), LES with sharp cut-off dealiasing is also performed in
the shifted reference frames. As might be expected, in case of sharp cut-off dealiasing, results in
all reference frames are exactly the same. In Figure 6, sharp cut-off dealiased LES is compared to
the cases where pentadiagonal dealiasing is used.

First of all, from Figure 6(a), it is clear that the influence on the energy decay is already relevant
for a relatively small velocity shift Ui = 1. Here, the relative magnitude of the velocity shift can
be appreciated inversely proportional to u/Ui , with u = (uiui/3)1/2 the rms-velocity fluctuation.
This corresponds to the turbulence intensity of a flow with mean velocity Ui , which transports
the homogeneous isotropic turbulence. In case Ui equals one, u/Ui ≈ 25%. Typically, e.g. in
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channel flows, mixing layers, the turbulence intensities can be considerably lower, thus inducing
a relatively higher velocity shift if the reference frame is transformed from a stationary one to a
reference frame which moves with the mean flow velocity. For example, the well-known Comte–
Bellot experiment on grid turbulence [34] is performed in a wind tunnel with a turbulence intensity
u/Ui ≈ 2%. For Ui = 6, in the present computation, the turbulence intensity u/Ui ≈ 5%. For this
case, the results in Figure 6 differ considerably from those in the original reference frame.

In Figure 6(b)–(d), the corresponding spectra at three different times are shown. Again, the
influence of the shift of reference frame, certainly for theUi = 6 case, can be appreciated. Moreover,
the wavenumber dependence of the difference, as is suggested by Equation (24) and Figure 5, can
be readily observed and is mainly situated in the intermediate to high-wavenumber range.

To conclude, the Galilean invariance property of the LES equations in double-decomposition
formulations are not satisfied when sharp cut-off-like pentadiagonal filters and Galilean invariant
models are used. The resulting differences in simulation when a Galilean transformation is applied
can be quite substantial. To counter this, one can add a correction term which is not Galilean
invariant to a Galilean invariant model mi j , i.e. by taking

�i j → mi j + Ui (u j − u j ) + (ui − ui )U j (25)

It is readily seen that a Galilean shift of reference frame with a velocityUi now results in exactly the
same solution. However, from a model point of view, Equation (25) introduces a new ambiguity.
Indeed, Ui represents the relative velocity difference between two reference frames. However,
there does not exist a unique standard reference frame, which allows to define Ui in absolute
sense. Consequently, observations on subgrid-scale models and results cannot straightforwardly
be generalized. This is a drawback, which should be carefully taken into account, when LES with
double decomposition spectral-cut-off-like filtering is used.

5. CONCLUSIONS

The use of spectral-like finite-difference schemes for the discretization of the filtered Navier–Stokes
equations with additional filter on the non-linear term has been investigated. The additional filter
on the non-linear term corresponds with a double decomposition of the subgrid-scale stresses.
This approach to the formulation of the LES equations is mainly encountered in the context
of pseudo-spectral discretization. In the present paper, the potential of this approach for finite-
difference-discretization methods is elaborated. Emphasis was on the accurate formulation of the
derivative discretization on the one hand, and further, on the spatial formulation of a ‘sharp’ in
the sense of steep filter, which can be used as a replacement of a sharp cut-off filter.

First of all, spectral-like filters are constructed with use of compact schemes [23]. Pentadiagonal
filters, with six parameters are used. These parameters are selected such that the filter is monotonous
in the interval 0�kh��, and has a cut-off situated approximately at kh = 2�/3. This ensures that
aliasing errors are minimal. Actual LES, using this filter on the non-linear term are performed, and
compared with LES where a sharp cut-off filter is used. Results are satisfactory when compared
with DNS, and differences between the pentadiagonal filtered LES and the sharp cut-off filtered
LES are small.

Second, the use of spectral-like compact schemes [23] for the discretization of derivatives is
assessed. The coefficients of the scheme are determined such that discretization errors are low in
the wavenumber range 0�kh�2�/3, which, for dealiasing reasons, corresponds to the maximum
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resolved wavenumber range. LES results using these schemes combined with filtering of the
non-linear term provides good results, which are significantly better than a standard second-order
method without additional filtering. When results for spectral-like schemes are compared with
LES using fourth-order discretization, spectral-like discretization again provides better results, but
differences are less pronounced.

LES with double decomposition of the subgrid term, which corresponds to an additional filter
operation on the non-linear term, does only provide a Galilean invariant non-linear term when
this filter is a sharp cut-off filter. In case a spectral-like filter is used, combined with a Galilean
invariant model, such as the Smagorinsky model, this causes a set of LES equations which are
not invariant under Galilean transformations. The corresponding deviation of the results, when a
Galilean transformation is performed, is shown to be wavenumber dependent, i.e. mainly occurs in
the mid- to high-wavenumber range. Actual numerical results in different reference frames, show
considerable differences, which cannot be neglected. This observation certainly is a drawback for
the formulation of LES with double decomposition in a finite-difference discretization context,
and should be carefully taken into account when this approach is used.

The current work has concentrated on simulations of decaying homogeneous isotropic turbu-
lence. Obviously, the presented numerical schemes have to be checked in different simulation
environments, such as channel flows, jets or mixing layers, and next to DNS, comparison with
higher Reynolds number experimental data is appropriate. In this context, some results and gen-
eralizations can be found in References [27, 28, 35]. However, the type of detailed error analysis
which can be performed in homogeneous isotropic turbulence, makes this a unique case for the
testing of basic discretization principles. The quantification of the Galilean invariance issue in
current paper is a clear demonstration of this. Detailed error analysis in more complex cases,
including Galilean-invariance effects on the solutions, is subject of ongoing research.
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